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Abstract—This paper considers phase retrieval from the mag-
nitude of one-dimensional over-sampled Fourier measurements, a
classical problem that has challenged researchers in various fields
of science and engineering. We show that an optimal vector in
a least-squares sense can be found by solving a convex problem,
thus establishing a hidden convexity in Fourier phase retrieval.
We then show that the standard semidefinite relaxation approach
yields the optimal cost function value (albeit not necessarily
an optimal solution). A method is then derived to retrieve an
optimal minimum phase solution in polynomial time. Using these
results, a new measuring technique is proposed which guarantees
uniqueness of the solution, along with an efficient algorithm
that can solve large-scale Fourier phase retrieval problems with
uniqueness and optimality guarantees.

Index Terms—Phase retrieval, over-sampled Fourier measure-
ments, minimum phase, auto-correlation retrieval, semi-definite
programming, alternating direction method of multipliers, holog-
raphy.

I. INTRODUCTION

PHASE retrieval seeks to recover a signal from the magni-
tudes of linear measurements [2]. This problem arises in

various fields, including crystallography [3], microscopy, and
optical imaging [4], due to the limitations of the detectors used in
these applications. Different types of measurement systems have
been proposed, e.g., over-sampled Fourier measurements, short-
time Fourier measurements, and random Gaussian, to name just
a few (see [5], [6] for contemporary reviews), but over-sampled
Fourier measurements are most common in practice. Two funda-
mental questions in phase retrieval are: i) is the signal uniquely
determined by the noiseless magnitude measurements (up to
inherent ambiguities such as global phase); and ii) is there
an efficient algorithm that can provably compute an optimal
estimate of the signal according to a suitable criterion?

This paper considers the 1D phase retrieval problem from
over-sampled Fourier measurements. It is well known that there
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is no uniqueness in 1D Fourier phase retrieval, i.e. there are mul-
tiple 1D signals with the same Fourier magnitude. This is true
even when we ignore trivial ambiguities which include a global
phase shift, conjugate inversion and spatial shift. Nonunique-
ness also holds when the support of the signal is bounded within
a known range [7]. In addition, since the phase retrieval prob-
lem is nonconvex, there are no known algorithms that provably
minimize the least-squares error in recovering the underlying
signal [8].

Existing methods that attempt to resolve the identifiability
issue include introducing sparsity assumptions on the in-
put signal [9]–[12], taking multiple masked Fourier measure-
ments [13], or using the short-time Fourier transform [14], [15].
Algorithmically, the most popular techniques for phase retrieval
are based on alternating projections [8], [16], [17], pioneered by
Gerchberg and Saxton [16] and extended by Fienup [17]. More
recently, phase retrieval has been treated using semidefinite pro-
gramming (SDP) and low-rank matrix recovery ideas [18], [19].
Several greedy approaches to phase retrieval have also been in-
troduced such as GESPAR [20], [21]. Semidefinite relaxation
for phase retrieval, referred to as PhaseLift [18], is known to re-
cover the true underlying signal when the measurement vectors
are Gaussian. However, in the case of Fourier measurements, as
we are considering here, there are no known optimality results
for this approach.

Despite the apparent difficulty in 1D Fourier phase retrieval,
we establish in this paper that under certain conditions this prob-
lem can be solved optimally in polynomial time. In particular,
we first show that the least-squares formulation of this prob-
lem can always be optimally solved using semidefinite relax-
ation. Namely, methods such as PhaseLift do in fact optimize
the nonconvex cost in the case of Fourier measurements. By
slightly modifying the basic PhaseLift program we propose a
new semidefinite relaxation whose solution is proven to be rank-
one and to minimize the error. However, due to the nonunique-
ness in the problem, the solution is not in general equal to the
true underlying vector. To resolve this ambiguity, we propose
a semidefinite relaxation that will always return the minimum
phase solution which optimizes the least-squares cost.

Based on this result, we suggest a new approach to measure
1D signals which transforms an arbitrary signal into a minimum
phase counterpart by simply adding an impulse, so that identifi-
ability is restored. We then recover the input using the proposed
SDP. This measurement strategy resembles classic holography
used commonly in optics [22]. Finally, we propose an efficient
iterative algorithm to recover the underlying signal without the
need to resort to lifting techniques as in the SDP approach. Our
method, referred to as auto-correlation retrieval–Kolmogorov
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factorization (CoRK), is able to solve very large scale problems
efficiently. Comparing to existing methods that provide iden-
tifiability, the proposed approach is easy to implement (both
conceptually and practically), requires a minimal number of
measurements, and can always be solved to global optimality
using efficient computational methods.

The rest of the paper is organized as follows. We introduce
the problem in more detail in Section II. In Section III we refor-
mulate phase retrieval by changing the variable from the signal
itself to the correlation of the signal, and discuss two ways
to characterize a correlation sequence, leading to convex opti-
mization problems. Extracting signals from a given correlation
sequence, known as spectral factorization, is briefly reviewed
in Section IV, where we also review the notion of minimum
phase. We then propose a new measurement system based on
transforming an arbitrary signal into a minimum phase one, via a
very simple impulse adding technique, in Section V. The highly
scalable CoRK algorithm is developed in Section VI to recover
the signal, providing the ability to optimally solve large-scale 1D
Fourier phase retrieval problems very efficiently. We summarize
the proposed method in Section VII, with some discussion on
how to modify the approach if we know that the sought sig-
nal is real. Computer simulations are provided in Section VIII
and show superiority of our proposed techniques both in terms
of accuracy and efficiency. We finally conclude the paper
in Section IX.

Throughout the paper, indices for vectors and matrices start
at 0, so that the first entry of a vector x is x0 , and the upper-left-
most entry of a matrix X is X00 . The superscript (·)∗ denotes
element-wise conjugate (without transpose), and (·)H denotes
Hermitian transpose of a vector or a matrix.

II. THE PHASE RETRIEVAL PROBLEM

In the phase retrieval problem, we are interested in estimating
a signal x ∈ CN from the squared magnitude of its Fourier
transform. The discrete-time Fourier transform (DTFT) of a
vector x ∈ CN is a trigonometric polynomial in ω defined as

X(ejω ) =
N −1∑

n=0

xne−jωn ,

and is periodic with period 2π. In practice it is easier to obtain
samples from the continuous function X(ejω ), which leads to
the M -point discrete Fourier transform (DFT) of x, where M ≥
N , if we sample at points

ω = 0,
2π

M
, . . . ,

2π(M − 1)
M

.

This operation is equivalent to the matrix-vector multiplication
F M x, where F M is the first N columns of the M -point DFT
matrix, i.e.,

F M =

⎡

⎢⎢⎢⎣

1 1 1 · · · 1
1 φ φ2 · · · φN −1

...
...

...
. . .

...
1 φM −1 φ2(M −1) · · · φ(N −1)(M −1)

⎤

⎥⎥⎥⎦ ,

with φ = e−j2π/M . The matrix-vector multiplication F M x can
be carried out efficiently via the fast Fourier transform (FFT)
algorithm with complexity O(M log M), unlike the general case
which takes O(MN) flops to compute.

With this notation, our measurements are given by

b = |F M x|2 + w, (1)

where w is a noise vector and | · |2 is taken element-wise. To
recover x from b we consider a least-squares cost (which coin-
cides with the maximum likelihood criterion assuming Gaussian
noise):

minimize
x∈CN

∥∥∥b − |F M x|2
∥∥∥

2
. (2)

The most popular methods for solving (2) are the Gershburg-
Saxton (GS) and Fienup’s algorithms. Both techniques start
with the noiseless scenario b = |F M x|2 , and reformulate it as
the following feasibility problem by increasing the dimension
of x to M and then imposing an additional compact support
constraint:

find x ∈ CM

such that b = |F M x|2

xn = 0, n = N,N + 1, . . . , M − 1.

It is easy to derive projections onto the two individual sets
of equality constraints, but not both. Therefore, one can ap-
ply alternating projections, which leads to the GS algorithm,
or Dykstra’s alternating projections, which results in Fienup’s
algorithm when the step size is set to one [23].

Due to the non-convexity of the quadratic equations, neither
algorithm is guaranteed to find a solution; nonetheless, Fienup’s
approach has been observed to work successfully in converg-
ing to a point that satisfies both set of constraints. When the
measurements are corrupted by noise, Fienup’s algorithm does
not in general converge. An alternative interpretation of the GS
algorithm shows that it monotonically decreases the cost func-
tion of the following optimization problem (which is different
from (2)),

minimize
x∈CN ,ψ∈CM

∥∥∥diag
{√

b
}

ψ − F M x
∥∥∥

2

subject to |ψm | = 1, m = 0, 1, . . . ,M − 1.

(3)

More recently, the general phase retrieval problem has been
recognized as a non-convex quadratically constrained quadratic
program (QCQP), for which the prevailing approach is to use
semidefinite relaxation [24] to obtain a lower bound on the
optimal value of (2). In the field of phase retrieval, this procedure
is known as PhaseLift [18]. Specifically, under a Gaussian noise
setting, PhaseLift solves

minimize
X∈HN

+

M −1∑

m=0

(
bm − tr

{
fm fH

m X
})2

+ λtr {X} , (4)

where HN
+ denotes the set of Hermitian positive semidefinite

matrices of size N × N , fH
m is the mth row of F M , and the

term λtr {X} is used to encourage the solution to be low-rank.



HUANG et al.: PHASE RETRIEVAL FROM 1D FOURIER MEASUREMENTS: CONVEXITY, UNIQUENESS, AND ALGORITHMS 6107

Problem (4) can be cast as an SDP and solved in polyno-
mial time. If the solution of (4), denoted as X� , turns out to
be rank one, then we also obtain the optimal solution of the
original problem (2) by extracting the rank one component of
X� . However, for general measurement vectors PhaseLift is
not guaranteed to yield a rank one solution, especially when
the measurement b is noisy. In that case PhaseLift resorts to
sub-optimal solutions, for example by taking the first principal
component of X� , possibly refined by a traditional method
like the GS algorithm. An SDP relaxation for the alterna-
tive formulation (3) is proposed in [25], and referred to as
PhaseCut.

In the next section we show that despite the nonconvexity
of (2), we can find an optimal solution in polynomial time
using semidefinite relaxation. Since there is no uniqueness in
1D phase retrieval, there are many possible solutions even in the
noise free setting. Among all solutions, we extract the minimum
phase vector that minimizes the least-squares error. We will
also suggest an alternative to the SDP formulation, that avoids
squaring the number of variables like PhaseLift. Next we will
show how any vector can be modified to be minimum phase
by adding a sufficiently large impulse to it. This then paves the
way to recovery of arbitrary 1D signals efficiently and provably
optimally from their Fourier magnitude.

III. CONVEX REFORMULATION

In this section we show how (2) can be optimally solved in
polynomial time, despite its non-convex formulation. Similar re-
sults have been shown in the application of multicast beamform-
ing under far-field line-of-sight propagation conditions [26],
and more generally for non-convex QCQPs with Toeplitz
quadratics [27], [28].

A. Phase Retrieval Using Auto-Correlation

We begin by reformulating the Fourier phase retrieval prob-
lem in terms of the auto-correlation function. Consider the mth
entry of |F M x|2 :

|fH
m x|2 =

N −1∑

n=0

φnm xn

N −1∑

ν=0

φ−νm x∗
ν

=
N −1∑

n=0

N −1∑

ν=0

xnx∗
ν φ(n−ν )m

=
N −1∑

n=0

n∑

k=n+1−N

xnx∗
n−kφkm

=
N −1∑

k=1−N

φkm

min(N −1+k,N−1)∑

n=max (k,0)

xnx∗
n−k

=
N −1∑

k=1−N

φkm rk ,

where

rk =
min(N −1+k,N−1)∑

n=max (k,0)

xnx∗
n−k , (5)

k = 1 − N, . . . ,−1, 0, 1, . . . , N − 1,

is the k-lag auto-correlation of x. Let us define

r̃ = [r1−N . . . r−1 r0 r1 . . . rN −1 ]T .

We first observe that |fH
m x|2 , originally quadratic with re-

spect to x, is now linear in r̃. Moreover, by definition rk = r∗−k .
Removing the redundancy, we let

r = [r0 r1 . . . rN −1 ]T ,

and write

|F M x|2 = �
{

F M Ĩr
}

,

where Ĩ = diag {[ 1 2 2 . . . 2]}, and �{·} takes the real part of
its argument. We can then rewrite (2) as

minimize
r∈CN

∥∥∥b −�
{

F M Ĩr
}∥∥∥

2

subject to r is a finite auto-correlation sequence.

(6)

The abstract constraint imposed on r in (6) is to ensure that
there exists a vector x ∈ CN such that (5) holds.

The representation in (5) of the auto-correlation sequence is
nonconvex (in r and x jointly). In the next subsection we con-
sider convex reformulations of this constraint based on [29]. In
Section IV we discuss how to obtain x from r in a computa-
tionally efficient way.

B. Approximate Characterization of a Finite Auto-Correlation
Sequence

Denote the DTFT of r̃ by

R(ejω ) =
N −1∑

k=1−N

rke−jωk .

Since r̃ is conjugate symmetric, R(ejω ) is real for all ω ∈
[0, 2π]. The sequence r̃ (or equivalently r) is a finite auto-
correlation sequence if and only if [30]

R(ejω ) ≥ 0, ω ∈ [0, 2π], (7)

which is a collection of infinitely many linear inequalities. A
natural way to approximately satisfy (7) is to sample this infinite
set of inequalities, and replace (7) by a finite (but large) set of
L linear inequalities

R(ej2π l/L ) ≥ 0, l = 0, 1, . . . , L − 1.

In matrix form, these constraints can be written as (similar to
the expression for |F M x|2 that we derived before)

�
{

F L Ĩr
}
≥ 0,

where F L is the first N columns of the L-point DFT matrix.



6108 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 23, DECEMBER 1, 2016

Using this result, we can approximately formulate prob-
lem (6) as

minimize
r∈CN

∥∥∥b −�
{

F M Ĩr
}∥∥∥

2

subject to �
{

F L Ĩr
}
≥ 0,

(8)

with a sufficiently large L. In practice, the approximate formu-
lation works very well for L ≥ 20N , a modest (and typically a
constant times) increase in the signal dimension. However, it is
not exact—one can satisfy the constraints in (8), yet still have
R(ejω ) < 0 for some ω.

C. Exact Parameterization of a Finite Auto-Correlation
Sequence

It turns out that it is possible to characterize the infinite set of
inequalities (7) through a finite representation, via an auxiliary
positive semidefinite matrix. One way is to use a N × N positive
semidefinite matrix to parameterize r [28]

rk = tr {T kX} , k = 0, 1, . . . , N − 1,

X � 0,

where T k is the kth elementary Toeplitz matrix of appropriate
size, with ones on the kth sub-diagonal, and zeros elsewhere, and
T 0 = I . Another way, which can be derived from the Kalman-
Yakubovich-Popov (KYP) lemma [31], uses a (N − 1) × (N −
1) matrix P to characterize r as a finite correlation sequence

[
r0 rH

1:N −1
r1:N −1 P

]
−

[
P 0
0 0

]
� 0,

where r1:N −1 = [r1 r2 . . . rN −1 ]T . It can be shown that the two
formulations are equivalent [32].

Adopting the first characterization, we may rewrite (6) as

minimize
r∈CN ,X∈HN

+

∥∥∥b −�
{

F M Ĩr
}∥∥∥

2

subject to rk = tr {T kX} , k = 0, 1, . . . , N − 1.

(9)

It is easy to see that we can actually eliminate the variable r
from (9), ending up with the PhaseLift formulation (4) without
the trace regularization. This result is proven in Appendix.

The implication behind the above analysis is that, even though
PhaseLift does not produce a rank one solution in general1, there
always exists a point in CN that attains the cost provided by
the SDP relaxation. In other words, the seemingly non-convex
problem (2) can be solved in polynomial time.

The trace parameterization based formulation (9) exactly
characterizes (6), with the price that now the problem dimen-
sion is O(N 2), a significant increase comparing to that of (8).
In Section VI we will derive an efficient alternative based on
ADMM. In the next section we show how to extract a vector x
from the auto-correlation r that solves (9).

1In fact, it has been shown that if the interior-point algorithm is used to solve
an SDP, it will always generate a solution that is of maximal rank [24].

IV. SPECTRAL FACTORIZATION

After we solve (6), either approximately via (8) or exactly by
(9), we obtain the auto-correlation of the optimal solution of the
original problem (2). The remaining question is how to find a
vector x that generates such an auto-correlation, as defined in
(5). This is a classical problem known as spectral factorization
(SF) in signal processing and control. There exist extensive
surveys on methods and algorithms that solve this problem,
e.g., [33], [34, Appendix], and [28, Appendix]. In this section,
we first derive an algebraic solution for SF, which also explains
the non-uniqueness of 1D Fourier phase retrieval, and reviews
the notion of minimum phase. We then survey two practical
methods for SF, which we will rely on when developing CoRK,
a highly scalable phase-retrieval algorithm.

A. Algebraic Solution

The DFT of an arbitrary signal x ∈ CN can be obtained by
sampling its z-transform on the unit circle |z| = 1. Let X(z) be
the z-transform of x, which is a polynomial of order N − 1. It
can be written in factored form as

X(z) =
N −1∑

n=0

xnz−n = x0

N −1∏

n=1

(1 − ξnz−1), (10)

where ξ1 , . . . , ξN −1 are the zeros (roots) of the polynomial
X(z). The quadratic measurements can similarly be interpreted
as sampled from the z-transform of r̃ defined as

R(z) = |X(z)|2 = X(z)X∗(1/z∗)

= |x0 |2
N −1∏

n=1

(1 − ξnz−1)(1 − ξ∗nz).

As we can see, the zeros of R(z) always come in conjugate
reciprocal pairs. Therefore, given R(z), we cannot determine
whether a zero ξ or its conjugate reciprocal (ξ∗)−1 is a root of
X(z), which is the reason that x cannot be reconstructed from
R(z). In other words, for a given signal x, we can find the zeros
of its z-transform as in (10), take the conjugate reciprocal of
some of them, and then take the inverse z-transform to obtain
another signal y [35]. If we re-scale y to have the same 	2 norm
as x, then it is easy to verify that

|F M x|2 = |F M y|2 ,

no matter how large M is, even though clearly x and y are not
equal.

Traditionally, this problem is often seen in design problems
where uniqueness is not important, e.g., FIR filter design [34]
and far-field multicast beamforming [26]. There, it is natural
(from the maximal energy dissipation point of view) to pick the
zeros to lie within the unit circle2, yielding a so-called minimum
phase signal.

The above analysis provides a direct method for SF. For a
given auto-correlation sequence r, we first calculate the roots

2If a zero ξ lie exactly on the unit circle, then (ξ∗)−1 = ξ, meaning R(z)
has a double root at that point, so we simply pick one as the zero for the signal.
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of the polynomial

R(z) = r0 +
N −1∑

k=1

(
rkz−k + r∗k zk

)
.

Because r is a valid correlation sequence, the roots come in
conjugate reciprocal pairs. Therefore, we can pick the N − 1
roots that are inside the unit circle, expand the expression, and
then scale it to have 	2 norm equal to

√
r0 .

Numerically, the roots of R(z) can be found by calculating
the eigenvalues of the following companion matrix:

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0

0 0 1
...

...
...

. . . 0
0 0 · · · 0 1
− rN −1

r ∗
N −1

· · · − r0
r ∗

N −1
· · · − r ∗

N −2
r ∗

N −1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

However, when expanding the factored form to get the coef-
ficients of the polynomial, the procedure is very sensitive to
roundoff error, which quickly becomes significant as N ap-
proaches 64.

B. SDP-Based Method for SF

To obtain a more stable method numerically, we can use an
SDP approach to SF.

For a valid correlation r, it is shown in [28, Chapter 2.6.1]
that the solution of the following SDP

maximize
X∈HN

+

X00

subject to rk = tr {T kX} ,

k = 0, 1, . . . , N − 1,

(11)

is always rank one. In addition, its rank one component generates
the given correlation and is minimum phase. Algorithms for SDP
are numerically stable, although the complexity could be high
if we use a general-purpose SDP solver.

The constraints in (11) are the same as the convex refor-
mulation (9), which according to Appendix A is equivalent to
PhaseLift without the trace regularization. Therefore, we may
consider instead solving the problem

minimize
X∈HN

+

M −1∑

m=0

(
bm − tr

{
fm fH

m X
})2 − λX00 . (12)

In Appendix B we show that for a suitable value of λ, the solution
of (12) is guaranteed to be rank one, and it attains the optimal
least-squares error.

The formulation (12) allows to use customized SDP solvers
to obtain a solution efficiently. For example, PhaseLift was orig-
inally solved using TFOCS [36], which applies various modern
first-order methods to minimize convex functions composed of
a smooth part and a non-smooth part that has a simple proximity
operator. For problem (12), the cost function is the smooth part,
and the non-smooth part is the indicator function for the cone
of semidefinite matrices.

It is now widely accepted that the trace of a semidefinite
matrix, or nuclear norm for a general matrix, encourages the so-
lution to be low rank [37]. However, interestingly, in our setting,
the correct regularization is in fact −λX00 which guarantees the
solution to be rank one for an appropriate choice of λ.

C. Kolmogorov’s Method for SF

Kolmogorov proposed the following method for SF that is
both efficient and numerically stable [31]. In what follows, we
assume that R(z) contains no zeros on the unit circle.

Consider taking the logarithm of the z-transform of x. Every
zero (and pole, which we do not have since x is finite length)
of X(z) then becomes a pole of log X(z). Assuming the roots
of X(z) lie strictly inside the unit circle, this implies that there
exists a region of convergence (ROC) for log X(z) that contains
the unit circle |z| = 1 and infinity |z| = ∞. This in turn means
that log X(z) is unilateral

log X(z) =
∞∑

n=0

αnz−n .

Evaluating log X(z) at z = ejω , yields

�
{

log X(ejω )
}

=
∞∑

n=0

αn cos ωn,

	
{

log X(ejω )
}

= −
∞∑

n=0

αn sin ωn,

implying that�
{

log X(ejω )
}

and	
{

log X(ejω )
}

are Hilbert
transform pairs. Moreover, since we are given R(z) = |X(z)|2 ,
we have that

�
{

log X(ejω )
}

=
1
2

log R(ejω ).

We can therefore calculate 	
{

log X(ejω )
}

from the Hilbert
transform of�

{
log X(ejω )

}
, and reversely reconstruct a signal

x that generates the given correlation r and is minimum phase.
In practice, all of the aforementioned transforms may be well

approximated by a DFT with sufficiently large length L. The
detailed procedure of Kolmogorov’s method then becomes:

1) compute the real part

γ =
1
2

log�
{

F L Ĩr
}

;

2) compute the imaginary part by taking the Hilbert
transform of γ, approximated by a DFT

φ = F Lγ,

ϕn =

⎧
⎪⎨

⎪⎩

0, n = 0, L/2,

−jφn , n = 1, 2, . . . , L/2 − 1,

jφn , n = L/2 + 1, . . . , L − 1,

η =
1
L

F H
L ϕ;

3) compute (1/L)F H
L exp(γ − jη), and take the first N

elements as the output.
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Kolmogorov’s method generates a valid output as long as in

the first step we have that �
{

F L Ĩr
}
≥ 0, so that γ is real.

This fits well with the approximate formulation (8), since if we
choose the same L for both (8) and Kolmogorov’s method, then
it is guaranteed to be able to run without encountering a syntax
error. Obviously, to obtain a solution with high accuracy, we
need L to be sufficiently large; empirically we found L ≥ 20N
to be good enough in practice. Computationally, this approach
requires computing four L-point (inverse-) FFTs with com-
plexity O(L log L), a very light computation burden even for
large L.

V. A NEW MEASUREMENT SYSTEM

So far we have seen that an arbitrary signal cannot be uniquely
determined from the magnitude of its over-sampled 1D Fourier
measurements, because there always exists a minimum phase
signal that yields the same measurements. Nonetheless, a least-
squares estimate can be efficiently calculated by solving either
(8) or (9) followed by spectral factorization, leading to an op-
timal solution that is minimum phase. If the true signal x is
indeed minimum phase, then we can optimally estimate it in
polynomial-time. However, the minimum phase property is not
a natural assumption to impose on a signal in general.

We propose to resolve this ambiguity by deliberately making
the signal minimum phase before taking the quadratic measure-
ments, so that the augmented signal is uniquely identified in
polynomial time. The true signal is then recovered easily by
reversing this operation.

For an arbitrary complex signal s, we suggest adding δ in
front of s before taking measurements, where δ satisfies that
|δ|≥‖s‖1 . Denote the augmented signal as smin. The following
proposition shows that smin is minimum phase.

Proposition 1: Consider an arbitrary complex signal

s = [s0 s1 . . . sN −1 ]T .

Then the augmented signal

smin = [δ s0 . . . sN −1 ]T , (13)

where |δ| ≥ ‖s‖1 , is minimum phase.
Proof: To establish the result we need to show that the zeros

of the z-transform of smin

δ + s0z
−1 + . . . + sN −1z

−N ,

or equivalently the roots of the polynomial

V (z) = zN +
s0

δ
zN −1 + . . . +

sN −1

δ
,

all lie inside the unit circle. To this end, we rely on the following
lemma.

Lemma 1: [38, Theorem 1] Let ζ be a zero of the polynomial

zN + cN −1z
N −1 + . . . + c1z + c0 ,

where c0 , . . . , cN −1 ∈ C and N is a positive integer. Then

|ζ| ≤ max

{
1,

N −1∑

n=0

|cn |
}

.

Substituting the coefficients of V (z) into the inequality in
Lemma 1 establishes the result. �

Conceptually, the approach we propose is very simple: all we
need is a way to over-estimate the 	1 norm of the target signal,
and a mechanism to insert an impulse in front of the signal before
taking quadratic measurements. For example, if we assume each
element in s comes from a complex Gaussian distribution with
variance σ2 , then we know that the probability that the magni-
tude of one element exceeds 3σ is almost negligible; therefore,
we can simply construct smin by setting δ = 3σN , resulting in
smin being minimum phase with very high probability.

Our approach can be used with a number of measurements
M , as small as 2N . Indeed, consider the equivalent reformula-
tion (6), in which the measurements b are linear with respect
to r. From elementary linear algebra, we know that N complex
numbers can be uniquely determined by as few as 2N real lin-
early independent measurements, even without the specification
that r is a finite correlation sequence. From a unique r, a unique
minimum phase smin can be determined using SF.

The impulse may also be appended at the end of the signal s,
resulting in a maximum phase signal, meaning all the zeros of
its z-transform are outside the unit circle.

Proposition 2: For an arbitrary complex signal

s = [s0 s1 . . . sN −1 ]T ,

the augmented signal

smax = [s0 . . . sN −1 δ]T ,

where |δ| ≥ ‖s‖1 , is maximum phase.
Proof: The z-transform of smax is

S(z) = s0 + s1z
−1 + . . . + sN −1z

1−N + δz−N .

Let z̃ = z−1 . Then

S(z̃) = s0 + s1 z̃ + . . . + sN −1 z̃
N −1 + δz̃N ,

which is a polynomial in z̃ and, according to Lemma 1, has all
its roots inside the unit circle. Taking the reciprocal, this means
that all the zeros of the z-transform of smax lie outside the unit
circle. �

It is easy to show that for a maximum phase signal

smax = [s0 . . . sN −1 δ]T ,

its equivalent minimum phase signal is

[δ∗s∗N −1s
∗
N −2 . . . s∗0 ]

T .

This means that if we measure the intensity of the Fourier trans-
form of smax instead, we can still uniquely recover s via solving
(6) followed by SF, take the conjugate reversal of the solution,
and then delete the first element to obtain an estimate.

Furthermore, from the analysis above, we can extend our
measuring technique so that the impulse is added away from the
signal:

[δ 0 . . . 0 s0 . . . sN −1 ]T , (14)

or

[s0 . . . sN −1 0 . . . 0 δ]T , (15)
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with an arbitrary number of zeros between δ and s. The resulting
augmented signal is still minimum/maximum phase, thus can
be uniquely identified from the intensity of its Fourier trans-
form. However, in this case more measurements are required
for identifiability.

It was briefly mentioned in [39] without proof that if the signal
has a strong first component, then it is minimum phase. Here we
propose adding an impulse as a means of restoring identifiability
for arbitrary signals. This concept is very similar to holography,
which was invented by Gabor in 1948 [22], and was awarded
the Nobel Prize in Physics in 1971. One form of holography,
spectral interferometry, inserts an impulse exactly in the form
of (14) or (15), and then measures the squared magnitude of the
Fourier transform of the combined signal [40], [41]. Despite the
similarities in obtaining the measurements, the theory behind
our approach and holography is very different, in several ways:

1) Holography constrains the length of the zeros between s
and δ to be at least N , the length of the signal, which is
not required in our method; in fact, in terms of the number
of measurements needed, the shorter the better.

2) We require |δ| ≥ ‖s‖1 , whereas holography does not have
any restriction on the energy of the impulse.

3) We provide an optimization based framework to recover
the underlying signal directly in a robust fashion by ex-
ploiting the minimum phase property which is not part of
the framework in holography.

VI. SCALABLE ALGORITHMS

In this section, we briefly describe how to directly use existing
PhaseLift solvers to obtain guaranteed rank one solutions effi-
ciently. Due to the extra memory required using SDP-relaxation
methods for large-scale problems, we then design a new algo-
rithm called CoRK that solves the approximate formulation (8)
with high efficiency, in terms of both time and memory.

A. SDP Based Algorithms

In the original PhaseLift paper [18], the authors used
TFOCS [36] to solve the SDP (4), which is a relatively effi-
cient way to solve large scale SDPs. As we discussed in Section
IV-B, we can ensure a rank one minimum phase solution by
solving (12) with an appropriate choice of λ. We find such a λ

via bisection: first we solve (12) with λ = 0 to get the optimal
value of the fitting term; next we solve it with a λ large enough
that the solution is guaranteed to be rank one, but with a possibly
larger fitting error; finally we bisect λ until both criteria are met.
Since TFOCS allows to specify initializations, after we solve
(12) for the first time, subsequent evaluations can be performed
much more rapidly via warm start. Moreover, there is a wide
range of λ that result in both a rank one solution and an optimal
fitting error, so that the overall increase in time required is small
compared to that of solving a single PhaseLift problem.

The disadvantage of SDP based algorithms is that one cannot
avoid lifting the problem dimension to O(N 2). If N is mod-
erately large, on the order of a few thousand, then it is very
difficult to apply SDP based methods in practice.

B. CoRK: An Efficient ADMM Method

We now propose a new algorithm for solving the approximate
formulation (8), which avoids the dimension lifting, and easily
handles problem sizes up to millions. Since (8) is a convex
quadratic program, there are plenty of algorithms to solve it
reliably. For example, a general purpose interior-point method
solves it with worst case complexity O(N 3.5) without taking
any problem structure into account. Nevertheless, noticing that
all of the linear operations in (8) involve DFT matrices, we aim
to further reduce the complexity by exploiting the FFT operator.

We propose solving (8) using the alternating direction method
of multipliers (ADMM) [42]. To apply ADMM, we first rewrite
(8) by introducing an auxiliary variable z ∈ RL :

minimize
r∈CN ,z∈RL

∥∥∥b −�
{

F M Ĩr
}∥∥∥

2
+ I+(z)

subject to �
{

F L Ĩr
}

= z,

(16)

where

I+(z) =

{
0, z ≥ 0,

+∞, otherwise,

is the indicator function of the non-negative orthant in RL .
Treating r as the first block of variables, z as the second, and
�{F L Ĩr} = z as the coupling linear equality constraint with
scaled Lagrange multiplier u, we arrive at the following iterative
updates:

r ← 1
M + ρL

(
F H

M b + ρF H
L (z − u)

)
,

z ← max
(
0,�

{
F L Ĩr

}
+ u

)
,

u ← u + �
{

F L Ĩr
}
− z,

(17)

where ρ is a constant described below. The derivation of the
algorithm is given in Appendix C.

All the operations in (17) are taken element-wise or involve
FFT computations of length L. This leads to a complexity
O(L log L), and effectively O(N log N) if L is chosen as O(N).
In contrast, a naive implementation of ADMM for quadratic
programming requires solving a least-squares problem in every
iteration [43], leading to an O(MN 2) per-iteration complexity,
which is significantly higher.

In terms of convergence rate, it is shown in [43, Theorem 3]
that our ADMM approach will converge linearly, for all values
of ρ > 0. The same reference provides an optimal choice of ρ
that results in the fastest convergence rate, for the case when
there are fewer inequality constraints than variables in the first
block. However, this requirement unfortunately is not fulfilled
for problem (8). Inspired by the choice of ρ in [43], we found
empirically that by setting ρ = M/L, the proposed iterates (17)
converge very fast, and at a rate effectively independent of the
problem dimension. For practical purposes, the convergence
rate we have achieved is good enough (typically in less than 100
iterations), but there exists pre-conditioning methods to further
accelerate it [44].
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As explained in Section IV-C, this formulation blends well
with Kolmogorov’s method for spectral factorization. We thus
refer to our approach for solving the 1D Fourier phase retrieval
problem (2) as the auto-correlation retrieval – Kolmogorov
factorization (CoRK) algorithm.

VII. SUMMARY OF THE PROPOSED METHOD

Throughout the paper, we divided 1D Fourier phase retrieval
into several steps (measurement, formulation, algorithms, etc.),
and for each step discussed several solution methods. For clarity
and practical purposes, we summarize our approach below based
on specific choices we found to be efficient.

Given an arbitrary vector s, we propose the following steps if
it is possible to insert an impulse to the signal before measuring
its Fourier intensity; otherwise, only step 2 will be invoked, in
which case we are guaranteed to solve the maximum likelihood
formulation optimally, but the estimation error may still be large.

1) Construct smin by inserting δ in front of s, i.e.,

smin = [δ s0 s1 . . . sN −1 ]T ,

such that |δ| > ‖s‖1 . Take the M -point DFT of smin,
where M > 2N , and measure its squared magnitude
b = |F M smin|2 .

2) Apply CoRK as follows:
a) Formulate the least-squares problem with respect to

the auto-correlation of smin as in (8),

minimize
r∈CN + 1

∥∥∥b −�
{

F M Ĩr
}∥∥∥

2

subject to �
{

F L Ĩr
}
≥ 0,

by picking L as the smallest power of 2 that is greater
than 32N . Solve this problem using the iterative
algorithm (17), repeated here by setting ρ = M/L:

r ← 1
2

(
1
M

F H
M b +

1
L

F H
L (z − u)

)
,

z ← max
(
0,�

{
F L Ĩr

}
+ u

)
,

u ← u + �
{

F L Ĩr
}
− z.

b) Extract the minimum phase signal that generates
the correlation r by Kolmogorov’s method, using
the same L, as follows (also given in Section IV-C):

γ =
1
2

log�
{

F L Ĩr
}

,

φ = F Lγ,

ϕn =

⎧
⎪⎨

⎪⎩

0, n = 0, L/2,

−jφn , n = 1, 2, . . . , L/2 − 1,

jφn , n = L/2 + 1, . . . , L − 1,

η =
1
L

F H
L ϕ,

x = (1/L)F H
L exp(γ − jη).

3) Obtain an estimate ŝ via

ŝn = xn+1 , n = 0, 1, . . . , N − 1.

Often, we have prior information that the signal of interest s
is real. This implies that the auto-correlation is also real so that
we need to restrict the domain of r and/or X in problem (8) or
(12) to be real. For the z-transform of a real signal, the zeros are
either real or come in conjugate pairs, which does not help the
non-uniqueness of the solution if we directly measure the 1D
Fourier magnitude. In Kolmogorov’s SF method, if the input r is
real and a valid correlation, then γ + jη is conjugate symmetric,
so that it is guaranteed to output a real valued signal. As for the
new measurement system, all the claims made for constructing
minimum/maximum phase signals still hold, when the signal is
restricted to be real. In Appendix C we show how to modify the
ADMM method (17) to accommodate real signals by adding an
additional projection to the real domain in the r update.

When x is real, the DFT has conjugate symmetry

X(e−j2πm/M ) = X∗(e−j2π (M −m )/M ),

meaning for the squared magnitude, bm = bM −m . Therefore, if
we take M samples between [0, 2π], then only the first M/2
measurements provide useful information. Consequently, we
still need M > 2N measurements sampled between [0, 2π] to
ensure identifiability.

VIII. SIMULATIONS

We now demonstrate the algorithms and the new measure-
ment system we proposed via simulations. We first show that
both algorithms, iteratively solving (12) while bisecting λ and
solving (8) followed by Kolmogorov’s method, are able to solve
the original problem (2) optimally, meaning the cost attains the
lower bound given by PhaseLift. Then, we show that apply-
ing the new measurement system proposed in Section V we
can uniquely identify an arbitrary 1D signal, whereas directly
measuring the over-sampled Fourier intensity does not recover
the original input, regardless of the algorithms being used. All
simulations are performed in MATLAB on a Linux machine.

A. Minimizing the Least-Squares Error

We first test the effectiveness of the proposed algorithms on
random problem instances. Fixing N = 128, we randomly set
M as an integer between [2N, 8N ], and generate b from an i.i.d.
uniform distribution between [0, 1]. We compare the following
algorithms:

� PhaseLift: Using TFOCS [36] to solve problem (4) with
λ = 0. This in general does not give a rank one solution,
therefore only serves as a theoretical lower bound on the
minimal least-squares error (2).

� PhaseLift-PC: The leading principal component of the
plain PhaseLift solution.

� PhaseLift-SF: Iteratively solving (12) while bisecting λ

until an equivalent rank one solution for (4) is found, again
using TFOCS. Each time TFOCS is initialized with the
solution from the previous iteration for faster convergence.
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Fig. 1. Optimality gaps from the PhaseLift lower bound in each Monte-Carlo
trial, cf. Section VIII-A.

Fig. 2. Time consumed in each Monte-Carlo trial, cf. Section VIII-A.

As we proved, this method is guaranteed to achieve the
lower bound given by PhaseLift.

� CoRK: Proposed method summarized in the second step
of Section VIII. For both steps, L is set to be the smallest
power of 2 that is greater than 32N .

� Fienup-GS: Fienup’s algorithm [45] with 1000 iterations,
then refined by the GS algorithm until the error defined in
(3) converges.

The optimality gaps between the minimal error in (2) obtained
by the aforementioned methods and the theoretical lower bound
given by PhaseLift are shown in Fig. 1; The running time of
the different methods is provided in Fig. 2, for the 100 Monte-
Carlo trials we tested. As we can see, PhaseLift-SF provides an
optimal rank one solution, although it takes more time compared
to solving one single PhaseLift problem. Since PhaseLift-SF
only provides a solution that is “numerically” rank one, when
we take its rank one component and evaluate the actual fitting
error (2), it is still a little bit away from the theoretical PhaseLift
lower bound, as shown in the red circles in Fig. 1. On the other
hand, the proposed CoRK method is able to approximately solve
the problem with high accuracy (a lot of times even better than
PhaseLift-SF) in a very small amount of time (shorter than the
standard Fienup-GS algorithm). The conventional Fienup-GS
method and the leading principal component of the PhaseLift
solution (in general not close to rank one) do not come close to
the PhaseLift lower bound.

B. Estimation Performance

We now verify that our proposed measurement technique,
described in Section V, is able to recover a signal s up to global
phase ambiguity. As we have shown in the previous simulation,

Fig. 3. Estimation error in each Monte-Carlo trial for the first simulation in
Section VIII-B.

the CoRK method performs similar to those based on PhaseLift,
but with much more efficiency. Therefore, we only compare
CoRK and Fienup’s algorithm as baselines. In each Monte-Carlo
trial, we first set N as a random integer between [1, 1024], and
then choose M as the smallest power of 2 that is larger than 4N .
A random signal s ∈ CN is then generated with elements drawn
from i.i.d. CN (0, 1). Two kinds of measurements are collected
for performance comparison:

� Direct: directly measure |F M s|2 ;
� Minimum Phase: Construct a minimum phase signal smin

as in (13) with δ = 3N , and then measure |F M smin|2 .
For the minimum phase measurements, when Fienup’s algo-

rithm is used, we add an additional step in which we use the
solution to generate an auto-correlation sequence and then ap-
ply spectral factorization (Kolmogorov’s method) to obtain a
minimum phase signal with the same fitting error. We denote
this approach by Fienup-SF. We employ a simple prior that
the added impulse δ is real and positive to resolve the global
phase ambiguity: after obtaining the minimum phase solution,
the result is first rotated so that the first entry is real and positive,
and then this entry is deleted to obtain an estimate ŝ. For direct
measurements, the estimation error is defined as

min
|ψ |=1

‖s − ψŝ‖2 .

The estimation error in each of the 100 Monte-Carlo trials is
shown in Fig. 3. We obtain perfect signal recovery when the new
measurement system is used together with the CoRK recovery
algorithm. This is never the case for direct measurements, even
though the fitting error ‖b − |F H

M x|2‖2 is always close to zero.
For the new measuring system, CoRK obtains a solution with
much higher accuracy, and lower computation time (shown in
Fig. 4), compared to the widely used Fienup’s algorithm.

The new measuring system, together with the proposed CoRK
method or Fienup’s algorithm followed by spectral factoriza-
tion, is also robust to noise, in the sense that the mean squared
error (MSE) E‖s − ŝ‖2 can essentially attain the Cramér-Rao
bound (CRB). The CRB for the phase-retrieval problem is de-
rived in [46], and is used here to benchmark the performance of
our new technique, which is the only method that can guarantee
perfect signal reconstruction in the noiseless case. The CRB re-
sults in [46] are with respect to the real and imaginary part of the
signal being measured, in our case smin. We therefore sum over
the diagonals of the pseudo-inverse of the Fisher information
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Fig. 4. Computation time in each Monte-Carlo trial (with the new
measurement system) for the first simulation in Section VIII-B.

Fig. 5. Normalized MSE ‖s− ŝ‖2 /‖s‖2 vs. normalized CRB using the new
measurement system, where we increased the number of measurements on the
left, and SNR on the right.

matrix except for the 1st and n + 1st entries, which corresponds
to the real and imaginary parts of δ, and define that as the CRB
for E‖s − ŝ‖2 . Furthermore, since the CRB is dependent on the
true value of smin, we show the results with respect to a fixed
signal s in order to keep the CRB curve consistent with how we
change one parameter setting of the simulation.

We set N = 1024 and generate a fixed signal s ∈ CN from
i.i.d. CN (0, 1). Similar to the previous simulation, smin is con-
structed according to (13) with δ = 3N , so that it is minimum
phase with very high probability. White Gaussian noise with
variance σ2 is added to the squared magnitude of the Fourier
transform of smin. The signal-to-noise ratio (SNR) is defined
as 10 log 10(‖|F M smin|2‖2/Mσ2). The performance is plotted
in Fig. 5, where we show the normalized error ‖s − ŝ‖2/‖s‖2

versus the normalized CRB (original CRB divided by ‖s‖2),
averaged over 100 Monte-Carlo trials. On the left, we fix SNR
= 40 dB, and increase the number of measurements M from
2N to 16N . On the right, we fix M = 8N , and increase the
SNR from 30 dB to 60 dB. The SNR may seem high here, but
notice that most of the signal power is actually concentrated in
the artificially added impulse δ, so that the actual noise power
is much higher comparing to that of s per se. In all cases the
MSE obtained from our proposed method is able to attain the
CRB sharply, even for as few as M = 2N measurements.

IX. CONCLUSION

We studied the phase retrieval problem with 1D Fourier mea-
surements, a classical estimation problem that has challenged

researchers for decades. Our contributions to this challenging
problem are as follows:

� Convexity: We showed that the 1D Fourier phase retrieval
problem can be solved by a convex SDP.

� Uniqueness: We proposed a simple measurement tech-
nique that adds an impulse to the signal before measuring
the Fourier intensities, so that any signal can be uniquely
identified.

� Algorithm: We developed CoRK – a highly scalable al-
gorithm to solve this problem, which was shown in our
simulations to outperform all prior art.

In terms of future research directions, it is interesting to
investigate how to incorporate constraints such as sparsity,
non-negativity, or bandlimitedness into the auto-correlation
parametrization. It is also tempting to consider extending our
hidden convexity result and fast algorithm from 1D to other
Fourier-based phase retrieval problems, for example the 2D
case, which is identifiable, but difficult to solve.

APPENDIX

A. Equivalence of PhaseLift and Problem (9)

We show that the exact convex reformulation (9) is in fact
equivalent to PhaseLift (4) without the trace regularization if
we eliminate the variable r in (9). A similar claim is given
in [27] for the more general Toeplitz QCQP, but we show this
again here in our context for completeness.

Consider the mth entry in the vector �{F M Ĩr}, and replace
r by its trace parameterization

rk = tr {T kX} , k = 0, 1, . . . , N − 1.

We then have that

�
{

fH
m Ĩr

}
= r0 + 2

N −1∑

k=1

�
{
φkm rk

}

= r0 +
N −1∑

k=1

(
φkm rk + φ−km r∗k

)

= tr {T 0X} +
N −1∑

k=1

(
φkm tr {T kX} + φ−km tr

{
T T

k X
})

= tr
{
fm fH

m X
}

, (18)

where the last step is a result of the fact that

T 0 +
N −1∑

k=1

(
φkm T k + φ−km T T

k

)
= fm fH

m .

We now eliminate r in (9) as follows:

∥∥∥b −�
{

F M Ĩr
}∥∥∥

2
=

M −1∑

m=0

(
bm −�

{
fH

m Ĩr
})2

=
M −1∑

m=0

(
bm − tr

{
fm fH

m X
})2

, (19)
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which is exactly the cost function for PhaseLift (4) without the
trace regularization.

B. Combining PhaseLift with Spectral Factorization

As we explained in the paper, 1D Fourier phase retrieval can
be solved exactly using SDP in the following two steps. First,
solve problem (9) (repeated here),

minimize
r∈CN ,X∈HN

+

∥∥∥b −�
{

F M Ĩr
}∥∥∥

2

subject to rk = tr {T kX} , k = 0, 1, . . . , N − 1.

(20)

Denote r� as the optimal solution of (20), which is the unique
solution since the cost of (20) is strongly convex with respect to
r. Next, perform an SDP-based spectral factorization by com-
puting the solution to

maximize
X∈HN

+

X00

subject to r�k = tr {T kX} , k = 0, 1, . . . , N − 1,

(21)

and let the optimal solution of (21) be X� . Note that X� is the
unique solution for (21), and it is rank one [28]. Here we want
to show that these two steps can actually be combined into one,
as shown in the following proposition.

Proposition 3: Consider the following SDP

minimize
X∈HN

+

M −1∑

m=0

(
bm − tr

{
fm fH

m X
})2 − λX00 . (22)

There exists some positive λ such that the solution of (22) is
guaranteed to be X� , which is also the solution of (21) with r�

being the solution of (20).
Proof: Notice that (r� ,X�) is a feasible solution for (20),

and in fact r� is the unique solution. On the other hand, X� is
only one solution among a set of solutions for (20), but is the
unique solution for problem (21). Now consider the following
problem

minimize
r∈CN ,X∈HN

+

∥∥∥b −�
{

F M Ĩr
}∥∥∥

2

subject to rk = tr {T kX} , k = 0, 1, . . . , N − 1,

X00 ≥ X�00 .

(23)

It is easy to see that (r� ,X�) is its unique solution. From
Lagrange duality, the above problem has the same solution as

minimize
r∈CN ,X∈HN

+

∥∥∥b −�
{

F M Ĩr
}∥∥∥

2
+ λ(X�00 − X00)

subject to rk = tr {T kX} , k = 0, 1, . . . , N − 1,

(24)

where λ > 0 is the optimal Lagrangian multiplier with respect
to the equality constraint X00 = X�00 in (23).

Finally, by dropping the constant λX�00 in the cost of (24)
and eliminating the variable r as we described in Appendix B,
we end up with the formulation (22), or (12), leading to our
conclusion that X� is the unique solution to (22). �

Proposition 3 allows to solve 1D Fourier phase retrieval via
solving (12), to which all methods provided by TFOCS can still
be applied, and by tuning λ we obtain an optimal solution that
is also rank one.

C. Derivation of Algorithm (17)

We first review the alternating direction method of multipliers
(ADMM), which is the tool used to derive algorithm (17).

Consider the following optimization problem:

minimize
x,z

f(x) + g(z),

subject to Ax + Bz = c.

ADMM solves this problem using the following updates

x ← arg min
x

f(x) + ρ‖Ax + Bz − c + u‖2 ,

z ← arg min
z

g(z) + ρ‖Ax + Bz − c + u‖2 ,

u ← u + Ax + Bz − c,

where ρ > 0 is the step size. ADMM converges to an optimal
solution as long as the problem is closed, convex, and proper.
The flexible two-block structure of the algorithm often leads
to very efficient and/or parallel algorithms that work well in
practice.

We now apply ADMM to problem (16), which leads to the
following steps:

r ← arg min
r

∥∥∥b−�
{

F M Ĩr
}∥∥∥

2
+ ρ

∥∥∥�
{

F L Ĩr
}
−z+u

∥∥∥
2

z ← arg min
z

I+(z) + ρ
∥∥∥�

{
F L Ĩr

}
− z + u

∥∥∥
2

u ← u + �
{

F L Ĩr
}
− z

The explicit update for z is very straight forward—it is simply
a projection of the point �{F L Ĩr} + u onto the non-negative
orthant, leading to the update of z as shown in (17).

We next derive the update for r in detail. First note that r is
in general complex, so that the derivative needs to be taken with
care. To this end we treat r and r∗ as independent variables and
take derivatives with respect to them separately. This approach
is referred to as the Wirtinger derivative [47]. Focusing on the
first term of the r sub-problem, we can rewrite it as

∥∥∥∥b − 1
2
F M Ĩr − 1

2
F ∗

M Ĩr∗
∥∥∥∥

2

. (25)

Taking the derivative with respect to r while treating r∗ as an
independent variable, we obtain

1
2
ĨF H

M F M Ĩr +
1
2
ĨF H

M F ∗
M Ĩr∗ − ĨF H

M b. (26)

Recall that F M represents the first N columns of the DFT
matrix, which are orthogonal to each other, so that F H

M F M =
MI . On the other hand, the columns of F ∗

M , except for the
first one, come from the last N − 1 columns of the same DFT
matrix; if we assume M ≥ 2N , then we have that all columns
of F ∗

M are orthogonal to columns of F M , except for the first
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one, which is equal to 1. Therefore, F H
M F ∗

M = ME00 , where
E00 has only one entry in the upper-left corner that is equal to
one, and zeros elsewhere. Since Ĩ = diag {[1 2 2 . . . 2]}, (26)
simplifies to

M

2
Ĩ Ĩr +

1
2
ĨE00 Ĩr∗ − ĨF H

M b = M Ĩr − ĨF H
M b,

where we used the fact that r0 is real. Similar expressions apply
to the second term of the r sub-problem. By setting the gradient
of the r sub-problem equal to zero, we have that

M Ĩr − ĨF H
M b + ρ

(
LĨr − ĨF H

L (z − u)
)

= 0,

which leads to the update for r given in (17). The gradient
with respect to r∗ can be shown to be exactly the conjugate of
the gradient of r. Therefore, equating it to zero gives the same
result.

Finally, if we restrict r to be real, then the term (25) can be
written as

∥∥∥∥b − 1
2
F M Ĩr − 1

2
F ∗

M Ĩr

∥∥∥∥
2

.

Its gradient with respect to r is then

1
2
ĨF H

M F M Ĩr +
1
2
ĨF H

M F ∗
M Ĩr − ĨF H

M b

+
1
2
ĨF T

M F M Ĩr +
1
2
ĨF T

M F ∗
M Ĩr − ĨF T

M b

=
M

2
Ĩ Ĩr +

M

2
ĨE00 Ĩr − ĨF H

M b

+
M

2
ĨE00 Ĩr +

M

2
Ĩ Ĩr − ĨF T

M b

= 2M Ĩr − 2�
{

ĨF H
M b

}
.

Therefore, it is easy to see that the update of r that is real is

r = �
{

1
M + ρL

(
F H

M b + ρF H
L (z − u)

)}
,

which is simply a projection of the original complex update onto
the real domain.
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